Supplementary Midsemestral Examination Algebra III - B. Sury November 26, 2019 Answer ANY SIX.

Q 1. Let *R* be any ring in which the equation ax = b has solutions for any $a \neq 0$ and $b \in R$. Prove:

(i) R has no (left or right) zero-divisors other than 0,

(ii) R has a unity,

(iii) R is a division ring.

Q 2. Call a complex number z an algebraic integer, if it is a root of a monic polynomial p(x) with integer coefficients. Consider the subring $\overline{\mathbb{Z}}$ of \mathbb{C} consisting of all algebraic integers. Show that there exists a strictly increasing sequence of ideals in $\overline{\mathbb{Z}}$.

Hint. Think of real 2^n -th roots of 2.

Q 3. For any positive integer n, give an explicit isomorphism between the ring $\mathbb{Z}[i]/(1+in)$ and $\mathbb{Z}/(1+n^2)$.

Q 4. Let X be an infinite set. Consider

$$I := \{ A \subset X : |A| < \infty \}.$$

Prove that I is an ideal of P(X) and that it is not of the form P(Y) for any subset Y of X.

Q 5. We have already seen that a Boolean ring (ring in which each element satisfies $x^2 = x$) must be commutative of characteristic 2. Show that every ideal generated by finitely many elements a_1, \dots, a_n in a Boolean ring, must be generated by a single element.

Q 6. In the ring $C([0,1],\mathbb{R})$ of continuous, real-valued functions on [0,1], show that an ideal generated by elements f_1, \dots, f_n is the full ring if and only if the functions f_1, \dots, f_n have no common zero in [0,1].

Q 7.

(a) Give an example of a commutative ring R in which for each positive integer k, there exists an element a such that $a^k = 0$ but there is no fixed n such that $r^n = 0$ for all $r \in R$.

Hint: Think of a ring of the form $R_1 \times R_2 \times \cdots$

(b) Let R be any commutative ring which has only finitely many nilpotent elements. Prove that any power series $\sum_{n=0}^{\infty} a_n X^n$ in R[[X]] all of whose coefficients are nilpotent in R, is a nilpotent element of R[[X]].